The Tool Locator
External Reference Specification
Steven E. Glass
February 19, 1986

Revised 11/21/85 (by Steven Glass)
Combines previous documents.
Changes calling mechanism and parameter passing.
Calls must be made from full native mode!

Revised 2/19/86 (by Steven Glass)
Adds new required calls.

Tool Locator ERS ' February 19, 1986

Preface

This document replaces two previous documents: "A Framework for
Implementing ROM- and RAM-Based Tools in Cortland" and "Writing and Calling
Cortland Tools.” | have combined the information in the two, into this single ERS.
This ERS has a little more background information in it than most ERS but |
provide the information so that the reader may understand why certain design
decisions have been made.

Introduction

In order to make Cortland as attractive as possible, we will include a number of
software tools in ROM. This approach makes the tools available to all programs
without using disk space and without the need to link tool libraries to applications.

Because there is never enough ROM to go around and because there will be
bugs in the ROM, some tools will end up in RAM from day one, and others will
have to migrate there between ROM revisions in the form of RAM based ROM
patches. "This suggests we develop a "ROM/RAM tools standarg" rather than a
"ROM tools standard.”

This document gives a framework for implementing ROM/RAM based tools on
Cortland. It defines an elementary unit of software packaging called a tool set
and an elementary unit of service called a function. Roughly, a tool set, which
consists of related functions, is a complete software tool or a major subset of a
software tool. Each function is an "entry point" of the tool set that performs a
fundamental operation. Additionaly, this ERS describes the too! set whose job it is
to allow tools and applications to communicate amongst themselves; this‘too! set
is called the Tool Locator.

DEFINITIONS

A tunction is a fundamental operation that converts zero or more inputs to zero
or more outputs and side effects. For example, allocate memory and multiply
single precision floating point are functions.

A tool set is a group of logically related functions. For example, a memory
manager is a tool set that implements such related functions as allocate
memory, free memory, etc. A tool set is to be implemented as a single code
module.

Steven Glass Page 2

Tool Locator ERS February 19, 1986

The Tool Locator is the particular tool set which allows tools and applications to
communicate.

A tool configuration is a collection of tool sets, some of which may be in ROM
and some of which may be in RAM.

A level of support is a tool configuration that is appropriate to support a given
class of application.

An operating system is a program that manages use of some or all of the
resources of a computer system. The set of Apple // operating systems includes
DOS, ProDOS, and UCSD Pascal.

An operating environment is a specific configuration of hardware, operational
modes (e.g., "native mode,” "emulation mode"), operating system, and tool
configuration defined by Apple. For example, one operating environment might
be "ProDOS running on a 256Kby Cortland with one 3.5" floppy drive and the
standard set of ROM based tools.” In most cases, the level of detail needed to
describe an operating environment will be much greater than this.

An application is a program that provides a set of services directly relevant to a
user's task. Examples include spreadsheets, compilers, assemblers, database
managers, text editors, word processors, file management utilities, etc.

An environment switcher is a program that can establish any of the defined
operating environments on a computer system.

A desktop manager is a program that identifies available applications,
provides a way for users to choose an application to run, establishes the
operating environment by calling the environment switcher, and makes various
desk accessories (such as calculator, clock, calendar, notepad) available to
users.

Emulation mode is the operational mode of the 65816 when the E control bit is
setto 1. In this mode, the 65816 behaves much like a 6502.

Full Native mode is the operational mode of the 65816 when the E, M, and X
control bits are set to 0.

Mixed Native mode is the operational mode of the 65816 when the E control
bit is set to zero but either M or X or both are set to one.

Steven Glass Page 3

Tool Locator ERS February 19, 1986

Assembly Language Conventions

BYTE expr assembles a byte containing the given expression value.
WORD expr assembles a 2-byte word containing the given value.
LONG expr assembles a 4-byte location containing the given value.
BLOCK expr reserves a block of storage consisting of expr bytes.

SUGGESTED CHARACTERISTICS OF TOOL SETS

This section lists characteristics intended to maximize the efficiency, usefulness,
flexibility, and implementability of ROM and RAM based tool sets without
unnecessary constraints. It is not suggested that we rewrite any existing code
along these lines, although, in some cases, it may be desirable to do so.

[1] Full Native mode. Whenever possible (which will be almost always) new
tool sets should use native mode. In general, this increases speed and
decreases code size compared to emulation mode. Since there is a long-
term desire to migrate all code to native mode, writing tool sets this way will
minimize mode switching over the long term.

[2] "ROMability.” All tool sets should be written assuming they will be placed in
ROM. This might not happen in early versions of Cortland, but the machine
has 1Mby of ROM address space, so things could change.

[3] Position independent code. All tool sets should be written in position
independent code—code that executes properly without relocation no matter
where it is placed in memory (assuming it does not straddle a bank
boundary). This simplifies the use of loadable tool sets with acceptable
impact on performance.

[4] Standard interface. From the caller's viewpoint, there should be one
standard protocol for calls to functions in tool sets. In particular, the caller
should not need to know if the called function is in ROM or RAM orifitis a
RAM based ROM patch of an entire tool set or only a single function.

[5] New tool sets should be accessible to programs in a straightforward manner.
While it would be nice to allow both native mode and emulation mode
programs to use new tools, the tools need to be efficient when in native
mode even at the expense of emulation mode programs.

[6] Dynamically assigned workspace. New tool sets should not use any fixed
RAM locations for work space. All work space must be obtained from the
Memory Manager. This avoids memory conflicts such as those caused by
fixed usage of "screen holes." A limited set of exceptions to this rule will be
discussed later.

Steven Glass Page 4

Tool Locator ERS February 19, 1986

(7]

(8l

(€]

[10]

Simple interrupt environment. All new functions must either be reentrant or
must disable interrupts during execution. Because each approach has
significant costs, the designer must consider this decision very carefully.
Most functions, especially those that execute in less than 500us, will
probably choose to disable interrupts. More time consuming functions
should probably also choose to disable interrupts, especially if they are
executed rarely.

Few fixed ROM addresses. In order to minimize the impact of ROM updates
and RAM based ROM patches, the interface to ROM based functions must
avoid having lots of fixed ROM entry points. It must be possible for the
system to construct a RAM-resident table of all function entry points at
system initialization time.

Functions must restore the caller's execution environment before returning
control to the caller.

O. S. independence. Functions may not assume the presence of any
operating system.

OUTLINE OF AN IMPLEMENTATION

This sec:on describes the essential features of a tool locator system that has
most of the above characteristics.

Addressing Tool Sets and Functions

Each tool set is assigned a permanent tool number. Assignment starts at one
and continues with each successive integer. Each function within a tool set is
assigned a permanent function number. For the functions within each tool set,
assignment starts at one and continues with each successive integer. Thus, each
function has a unique, permanent identifier of the form (TSNum,FuncNum).

Both the TSNum and FuncNum are 8 bit numbers.

Steven Glass Page 5

Tool Locator ERS February 18, 1986

So far, the following are assigned.

Tool Set Descriptions
Number

Tool Locator
Memory Manager
Misc. Tools
QuickDraw |l
Desk Manager
Event Manger
Scheduler
Sound Manager
FDB Tools

0 SANE

2 OCONOITOHALWN =

For each Tool Set, the following calls must be present:
FuncNum Descriptions

boot initialization function for each tool set
application startup function for each tool set
application shutdown function for each tool set
version information

Reset

Reserved

Reserved

Reserved

O~NO O DA WN -

The boot initialization function is executed at boot time either by the ROM startup
code or when the tool is installed in the system.

The application startup function is called by the application before using the too!.
A tool uses this call to obtain initialization information from the application that is
going to use it. For example, an tool may require space in bank zero for zero
page and it gets it from the application on this call. An initialization function
needs to check if the tool is already active. If it is active it should return an
"already initialized" error and do nothing. Multiple initializations are No-ops.

The application shutdown function is called by the application before it
terminates. A tool should release any memory it has obtained in the name of the
application at this time.

All tool's will return version information in the same form: a word. The high byte of

the word will indicate the major release number (starting with 1). The low byte of
the word will indicate the minor release number (starting with 0). The most

Steven Glass Page 6

Tool Locator ERS ' February 19, 1585

significant bit of the of the word indicates whether the code is an official release or
a prototype (set implies prototype). There is no distinction between alpha, beta or
other prototype releases other than whether or not it is a prototype.

P Major Minor
. I l

The reset function is called whenever reset occurs. If atool is active, it needs to
do whatever makes sense for reset. If a tool cannot continue after resat, it should
return a "cannot reset" error. |If any tool returns an error on reset, the tool locator
will force a system death after the last tool has been reset.

Structure of Tool Sets

The Tool Locator System proposed here requires no fixed ROM locations and a
few fixed RAM locations.

How do we perform this magic? All functions are accessed through the tool
locator via their tool set number and function number, The Tool Locator uses the
tool set number to find an entry in the Tool Pointer Table (TPT). This table
contains pointers to Function Pointer Tables (FPT). Each tool set has an FPT
containing pointers to the individual functions in the tool set. The Tool Locator
uses the function number to find the address of the function being called.

every time we revise the firmware as long as the firmware initializes the RAM

The TPT has the following form:
Count (4 bytes)

Pointer to TS 1 (4 bytes)
Pointerto TS 2 (4 bytes)

Steven Glass 0 Page 7

Tool Locator ERS February 19, 1986

An FPT has the following form:

Count (4 bytes)
(Pointerto F1) -1 (4 bytes)
(Pointerto F2) - 1 (4 bytes)

In both tables, the count is the number of entries plus 1.

Tools are to obtain any memory they need dynamically (using as little fixed
memory as possible). To use memory obtained through a memory manager, a
tool needs some way to find out where its data structures are. The tool locator
system maintains a table of work area pointers for the individual tools. The Work
Area Pointer Table (WAPT) is a table of pointers to the work areas of individual
tools. Each tool will have an entry in the WAPT for its own use. Entries are
assigned by tool number (tool four has entry four and so on). A pointer to the
WAPT must be kept in RAM at a fixed memory location so that space for the table
can be allocated dynamically. At firmware initialization time, the pointer to the
WAPT is set to zero.

Summary of Terms

I

Tool Pointer Table (TPT)
This is the table of pointers to indivdual Function Pointer Tables.

Function Pointer Table (FPT)
This is the table of pointers to the functions in an individual tool set.

Work Area Pointer Table (WAPT) '
This is the place a tool keeps a pointer to its work area.

User Tools and System Tools

The Tool Locator System proposed here is so flexible that individual application
writers may want to write their own tool sets to use in their applications. The

problem comes up when we have to assign tool set numbers. Rather than trying
to reserve tool set numbers for tools we have not yet written (to reserve space in
the TPT), the Tool Locator System will support both system tools and user tools.

Steven Glass Page 8

Tool Locator ERS February 19, 1986

Permanently Reserved RAM

-The tool locator system permanently reserves some space in bank $E1). Itis
used as follows:

(4 by) Pointer to the active TPT. This will point to the ROM based TPT if there
are no RAM based tool sets and no RAM based ROM patches.
Otherwise, it will point to a RAM based TPT.

(4 by) Pointer to the active user's TPT. This will be zero initially, indicating that
no user tools are present.

(4 by) Pointer to the Work Area Pointer Table (WAPT). The WAPT parallels the
TPT. Each WAPT entry is a pointer to a work area assigned to the
-corresponding tool set. At startup time, each WAPT entry is set to zero,
indicating no assigned work area.

(4 by) Pointer to the user's Work Area Pointer Table (WAPT).

(16 by) Entry points to the dispatcher

This is the only RAM perm'anently reserved by the tool locator system.
Tool Locator System Initialization

Each tool set must be initialized before use by application programs. Two types
of initialization are needed: boot initialization and application initialization. Boot
initialization occurs at system startup time (boot time); regardless of the
applications to be executed, the system calls the boot initialization function of
every tool set. Thus, each tocl set must have a boot initialization routine
(FuncNum = 1), even if it does nothing. This function has no input or output
parameters.

Application initialization occurs during application execution. The application
calls the application startup function (FuncNum=2) of each tool set that it will use.
The application startup function performs the chores needed to startup the tool set
so the application can use it. This function may have inputs and ocutputs. Each
tool set will define what they are. A common input will be the address of space in
bank zero that the tool can use.

The application shutdown function (FuncNum=3) should be executed as soon as
the application no longer needs to use the tool set because it releases the
resources used by the tool set. As a precaution against applications that forget to
execute the shutdown function, the startup function should either execute the
shutdown function itself or do something else to assure a reasonable startup

Steven Glass Page 9

Tool Locator ERS - February 19, 1986

state. This function may have inputs and outputs as well. Again they are defined
by the individual tool sets.

The provision of two initialization times reflects the needs of currently envisioned
tool sets. For example, the Memory Manager will require boot time initialization
because it must operate properly even before any application has been loaded.
On the other hand, SANE only needs to be initialized if the system executes some
application or desk accessory that uses it. Initializing only the tool sets that will be
used saves resources, particularly RAM.

System startup code must copy the ROM based pointer to the TPT to the fixed
RAM location and then call the the tool locator boot initialization routine
(TSNum=1, FuncNum=1).
The firmware initialization routine will

1. Initialize the four RAM pointers described above.

2. Call the Tool Locator boot initialization function (TSNum=1,
FuncNum=1), which will do the following:

a. Call the memory manager boot initialization function (TSNum=2,
FuncNum=1), which will initialize its private workspace as well as
any other workspace it needs to indicate the initial reservation
status of all of memory.

" b. Determine the number of tool sets.

c. Callthe memory manager to allocate space for the WAPT, and
initialize all WAPT entries to zero.

d. Successively call the boot initialization function of every tool set
starting with TSNum=3.

There are several points to keep in mind:
The Initialization Function does not load RAM based tool sets.
The memory manager boot initialization function needs reserved private
workspace because it has no other way to find workspace. This function
must find and catalog all available RAM.

Boot Initialization functions and Application Initialization functions operate
in the standard execution environment for functions. This is described later.

Steven Glass Page 10

Tool Locator ERS February 19, 1986

Each tool set designer must determine how to split initialization tasks
between the module’s boot initialization function and its application
initialization function.

Disk and RAM Structure of Tool Sets

This section discusses additional details of dynamically loaded, RAM based tool
sets and of RAM based ROM patches. The exact form of tool set on disk is
undecided at this time. Our goal is that Tool Sets will be kept in simple load
modules which can be dynamically loaded into memory whenever they are
needed. Still unresolved is

1. Naming conventions. Will the tools be in single file with a specific name
(e.g. system.tools) or will we use a file type and/or suffix (e.g.
graphics.tools, math.tools, window.tools, desk.tools)

2. Loading conventions. How will an application cause tools to be
loaded? What it they are aiready in memory (used by the finder which
launched the application)? What if they were on the finder disk and the
application disk?

3. Forcing a particular version. Can an application force a particular
version of a tool to be used?

Handling RAM Based Tool Sets

The routine which causes a tool to be loaded will be responsible for calling the
boot initialization function of each RAM based tool set after it loads it and installs it
in the TPT. This raises the possibility of double execution of a tool set's boot
initialization function—ROM based boot initialization function at boot time which is
called again when a RAM based patch is loaded and initialized. Thus, each
RAM based boot initialization function must be able to 1) undo the effect of its
corresponding ROM based boot initialization function (if any) and 2) perform its
own initialization processing.

The main uses of RAM based tool sets are to accommodate tools that could not fit
in ROM and to allow patches of erronecus ROM code. The first usage is simple
because an entire tool set is loaded into RAM from disk. The second case is
more complex because we may want to patch only a few of the functions in a
given tool set.

We can add RAM based tool sets or patches by building a new TPT. The new
TPT contains all the entries in the old TPT except for the newly added RAM based

Steven Glass Page 11

Tool Locator ERS : February 19, 1986

tools and/or patches. The Tool Locator provides a single call to handie this in a
sensible way. :

The biggest problem with patches of this kind is significant restrictions on how
things are implemented. For example, a patch has no simple way to access local
subroutines and constant data in the main body of the original tool set without
prior agreement on some convention that makes access to these items
independent of their ROM addresses. For example, the boot initialization function
of a tool set could put a pointer to a subroutine or data address table into its work
area, thus making it accessible to the RAM based code. These conventions need
to be worked out in detail by each tool set designer.

INTERFACE BETWEEN APPLICATIONS AND FUNCTION CALL
DISPATCHER

The Goals. In developing a call mechanism we are trying to find one that is
fast, compact and easialy callable from a high level language. We do not want
calls to tools to take so long that no program could afford the time to make them:
we do not want calls to take up so much space that a program could not afford
the space to make them; we do not want high level languages to use so much
glue to make tool calls that high level language use will be discouraged.

Past History. We have two precedents to look at in the Apple Il (6502) world.
ProDOS and all the Apple Il tool kits are called with the following ensemble:

jsr EntryPoint
byte CallNumber
word ParameterTable

On the Apple ///, SOS was called with the following slightly different ensemble:

brk
byte CallNumber
word ParameterTable

Both schemes lead to a relatively small amount of code in line and relatively
quick execution. But they do not allow for easy high level language interface.
(See the appendix on the path not taken for how we could have used this kind of
scheme on Cortland.)

A high level language would like to call tools just like it calls any other
subroutines. A compiler wants to generate the following code for a procedure X.

procedure X (p1, p2,..., pn)

Steven Glass Page 12

Tool Locator ERS February 19, 1986

push p1
push p2

Eush pn
jst X

A compiler also wants to generate similar code for a function Y.
function Y (p1, p2,..., pn) : value

push ValueSpace
push p1
push p2

5ush pn
jsl'Y

ISSUING THE CALL THROUGH THE DISPATCHER
Our dispatching scheme looks very similar to the code generated by the compiler.

push inputs

ldx #TSNum+FuncNum*256

jsl Dispatch ’
bcs HandleError (optional, usually not required)

The inputs look the same on the stack but the call number and error information
are passed in registers. A high level language will have to use a small glue
routine to handle this. The calling code and glue will lock like .

Push Input1
Push Input2

f;{Jsh Inputn
jst Glue

Glue
Idx #TSNum+FuncNum*256
jsl Dispatch2

bcs HandleError (optional, usually not required)
rtl

The glue calls a different entry point because there is an extra three bytes of
return address information on the stack. The two different entry points make the

Steven Glass Page 13

Tool Locator ERS . February 19, 1886

stack look the same to the fucntion being called. (It would not do to have the
inputs be at different depths on the stack depending on how a function is called).

What About Speed? The scheme presented so far fulfills most of the
requirements outlined earlier. Unfortunately, there is overhead associated with
making a function call. Current estimates suggest that call dispatch will take
about 118 micro seconds. For most calls, this is fast enough, but not for all calls.
Individual tool sets may set up conventions for calling some of their functions
directly.

Return from the Call

Upon completion of the call, the function call returns control directly back to the
calling routine. Some tool sets will support returning errors on some functions.
If they do, the convention is as follows:

C Flag indicates error
A-register contains error code

The state of all flags and registers is summarized as follows:

N flag As set by function

As set by function

Unchanged (must be 0)
Unchanged (must be 0)
Setto O

Unchanged

As set by function

As set by fucntion or error flag
Unchanged (must be 0)

register As set by fucntion or A=0 successful call, A=0 error code
As Set by function

As Set by function ,

Parameters have been removed from stack

Unchanged

See list of flags above

Unchanged

Unchanged

Address following call

VOM<K<X>r MONTOX3I

VUVO
Oww

Note that "unchanged" means "same as value just before function call.”

Steven Glass Page 14

Tool Locator ERS '— February 19, 1986

Error Codes

Tool sets should return error codes in the a register that have the tool set number
in the high byte and the "message” in the low byte. The dispatcher will return two
errors and have a high byte of zero.

The following error code values are reserved for exclusive use by the function
dispatcher:

Eror code= 30001 Value of <TSNum> does not make sense
$0002 Value of <FuncNum> does not make sense

Every tool set may have to return an already initialized error and a cannot reset
error. These error codes are defined as follows:

Error Code Meaning
XX01 Already initialized
XX02 Cannot reset

where XX is the tool set number.
Remaining error codes are defined by individual tool set designers.

Parameter Passing Details
Generally, there are several ways to pass parameters:

1) in the stack.
2) in a parameter block.
3)inthe A, X, and Y registers.

Method 1 is the most common method used by high level languages. Method 2 is
also very flexible, since the parameter block may be anywhere in memory and
may contain additional pointers to anywhere in memory. Method 3 is also useful
for small or few parameters but since the tool dispatcher does not preserve the
registers going into a function, it is only useful for one way communication.

The parameters and parameter passing method are defined by each function.

~Steven Glass Page 15

Tool Locator ERS ' February 19, 1986

Passing Control to the Function

The application will set up its parameters and make the function call. Before
handing control to the function, the tool dispatcher checks the machine state. I
the call was not made from full native mode, an error is returned (or system
death).

If the call is made in the right mode, the D bit is cleared. (The I bit remains
unchanged and the remaining status and control! bits are undefined.) Next, the
tool dispatcher manipulates the stack so that any inputs are at the right depth no
matter how a call is made. Finally, the tool dispatcher puts the low word of the
work area pointer in the A register and the high word of the work area pointer in
the Y register. With the registers set up this way, it will call the function using a
JSL instruction.

The following table summarizes stack contents on function entry:

Offset
from S Contents

Function Value area it any
Parameters

Return address in Glue
Return address in calling code
Top of Stack

O-—*-I'&\l-\J
wWoe -

Register contents will be as follows on function entry:

A register Low word of pointer to work area
High word of pointer to work area
Undefined
Current top of stack (i.e. one byte below lowest used location)
As left by application program
See previous paragraph
Data bank is as left by application
Program bank is bank of function.
C Address of function.

OunXxX<

VXW®WDT

Return from the Function
The function itself defines its handling of all parameters. The most common case

will be with stack parameters handled by pulling off any input parameters and
leaving any function return on the stack for the calling program to handle.

Steven Glass Page 16

Tool Locator ERS February 19, 1986

WRITING A FUNCTION

Tools need memory for their data. They will be more efficient if they store their
data on zero page, but how will they know what part of bank zero they can use for
zero page? The only sensible answer is to have the application tell the tool what
it can use (this would be done with the application initialization function).

A function may not use any memory that has not been assigned to it by the
application or reserved via the memory manager unless it saves and restores the
memory. If it uses memory in this way it must turn interrupts oft while unreserved
memory is changed.

Is Bank Zero Required?

Does an application have to provide bank zero space for each tool it will use? If it
did not, the tool would have to save and restore bank zero on each call. We can
design this ability into our tools but should we? | think not; if the application
cannot afford a little bank zero space, it should save and restore the area itself.

Re-Entrant Tools

A tool needs either to be re-entrant or to turn off interrupts while it runs. The first
option requires careful coding and the second may be undesirable.

For a tool to be re-entrant, it must keep state information in such a way that one

can interrupt a call, make a new call, and return from the interrupt in such a way
that the original call is not disturbed. |f we assume that a tool does not have any
self-modifying code, its entire state is characterized by its data.

A Tool's State

A tool has two kinds of data: permanent data and temporary data. The
permanent data are variables which need to be maintained from call to call;
temparary data are variables that are initialized and used only when a function in
a tool is running.

We can make rules which guarantee preservation of state information. A possible
rule is that all global variables must be kept in a known place (which can be
saved and restored by an interrupt) and that temporary variables must be kept on
the stack. Unfortunately, our processor does not lend itself well to using the stack
for variables.

The Rule

Steven Glass Page 17

Tool Locator ERS February 19, 1986

A more workable rule is to keep all variables in a known place, and make the
interrupting code responsible for preserving them.

What is a known place? Tools do not use fixed memory locations for their data.
They get bank zero memory from the application, and get additional memory from
the memory manager. The location of one of these is kept in the work area
pointer table (WAPT) and the address of any other (if there is any other) is kept in
the work area. Thus the entire state of a tool is characterized by the pointer in the
WAPT. If we save this pointer, restart a tool, do something and restore the pointer
we preserve the tool's state as it nothing was done.

Two Tool Locator calls will take care of this for us: GetWAP and SetWAP (for get
and set work area pointer).

It a tool requires that the application give it some zero bank for its global area,
data access can be very fast. Two examples follow.

Steven Glass ' Page 18

Tool Locator ERS ' February 19, 1986

Example 1: A Function to Set Global Value on Zero Page. In Pascal
SetAValue would look like:

procedure SetAValue (value :integer);

Code to call the function

Ida TheValue

pha

ldx #FuncNum*256+TSNum
js! Dispatch

The Function itself

MyFunction

OrigDirect equ 1

RTL1 equ OrigDirect+2
RTL2 equ RTL1+3
TheValue equ RTL2+3

phd ; save current direct register
ted ; make my zero page active
jsr StartCheck ; find out if | was initialized
beq GoOn ; all is well
bri ErrorQut2 ; an error occured

GoOn ida TheVaiue,s ; get the new value
sta Global ; put it on zero page
jmg EndCali2 ; Use quit routine
en

- ; Returns with no error in a register it a or y are non-zero

StartCheck
cmp #0
bne OK
cpy #0
bne OK
lda #Notlnitialized
rts
OK Ida #0
rts
end

; EndCall2 and ErrorQut2 move the return addresses up two
; bytes on the stack. Similar closing routines would be necessary for
; each way a tool is called.

EndCall2
ida #0 . set result code
ErrorOut2
tax ; save resutt in x
pld : ; restore original direct register

Steven Glass Page 19

Tool Locator ERS

February 19, 1886

ida 5,8 . - move ril adr's up
sta 7,8

ida 3,8

sta 5,8

ida 1,8

sta 3,8

pla - Remove extra word
txa : get back result
cmp #1 : set carry right

rt ; all done

Example 2: A Function with more than one inputs. In Pascal the SetRect
procedure has five inputs. A pointer to a rectangle record and four
integers that are to be put into the rectangle record.

procedure SetRect (var TheRect : rect;

Top : integer,;
Left : integer;
Bottom : integer;
. Right : integer)
Code to call the function
pea ATheRect : push high word of rect ptf on stack
pea TheRect : push low word of rect ptr on stack
Ida Top : push the value of top
pha
Ida Lett : push the value of left
ha ‘
da Bottom - push the value of bottom
pha
ida Right : push the value of right
pha

idx #FuncNum®256+TSNum
js! Dispatch

The Function itself

MyFunction

origDirect equ 1

Ret1
Ret2
Right
Bottom
Left

Top
TheRect

Steven Glass

equ OrigDirect+2
equ Ret1+3

equ Ret2+3

equ Right+2

equ Bottom+2
equ Left+2

equ Top+2

Page 20

Tool Locator ERS

phd

tsc
ted

Ida Top

sta [TheRect]
Ida Left

Idy #2

sta [TheRect],y
Ida Bottom

Idy #4

sta [TheRect],y
Ida Right

Idy #6

sta [TheRect],y

jmp EndCail12

February 19, 1985

» Save current direct register

i §et stack pointer

» EndCall12 ang ErrorOut12 move the return addresses up twelve

ol Locator including initializing aJ|

: bytes on the stack.
EndCall12
Ida #0 ' Set result code
ErrorOut12
tax ' Save resutt in x
pid » restore origina| direct register
Ida 55 » Move rtl adr's up
sta 17,s
lda 3.5
sta 15 g
Ida 1,5
sta 13,3
tsc » §et stack pointer
clc » CUt back stack by 12
adc #12
tcs
txa » get back resyit
cmp #1 » Set carry right
rt! ; all done
Tool Locator Calls
TLBootlnit Call 1
Does boot initialization for the To
other ROM based Too| Sets. No application sk

routine.

Steven Glasg

ould ever ca|| this

Page 21

Tool Locator ERS ‘ ' © February 19, 1986

TLStartup Call 2

Called by every application before any other tool calls.
TLShutDown Call 3

Called by every application just before quitting.
TLVersion Call 4

output version word

Returns version information about the Tool Locator.

TLReset | Call 5

This call is made whenever reset occurs. It calls the reset function of
every tool set in the system.

Reserved Call 6
Reserved Call 7
Reserved Call 8

Steven Glass ' Page 22

Tool Locator ERS February 19, 1986

GetTSPtr Call 9
input UserOrSystem
input TSNum
output Pointer

Returns pointer to the Function Pointer Table of the specified tool set.

SetTSPtr Call 10
input UserQOrSystem
input TSNum
input Pointer

Installs the pointer to a Function Pointer Table in the appropriate
TPT. (0 will be the system while $8000 will be for the user.) Ifthe
TPT is not yet in RAM, it copies the TPT to RAM. (Memory forthe TPT
is obtained from the memory manager.) If there is not enough room
in the TPT for the new entry, the TPT is moved to a bigger chunk of
memory. Likewise, the WAP Table is expanded. (Memory for these
expansions.is obtained from the memory manager.) If the new
pointer table has any zero entries, old entries are moved from the old
point 3r table to the new pointer table. (This is the call that will allow
us to patch a subset of a Tool Set without replacing the whole thing.)

GetFuncPtr : Call 11
input UserOrSystem
input TSNum
input FuncNum
output Pointer

Returns pointer to the specified function in the specified Tool Set.

There is no SetFuncPtr in this specification. Does anyone think we need it?
The SetTSPir call should do all we need for patching an individual routine.

GetWAP’ Call 12

Steven Glass

input UserOrSystem
input TSNum

Page 23

Tool Locator ERS February 19, 1986

output Pointer

Gets the pointer to the work area for the specified module.

SetWAP Call 13
input UserOrSystem
input TSNum
input Pointer

Sets the pointer to the work area for the specified module.

Summary of changes since previous version.

The reset call and three reserved calls are now required of every tool set.
The first non required function number is 9.

Steven Glass Page 24

Tool Locator ERS : February 19, 1986

Appendix A
The Path Not Taken

Earlier versions of this document used a ditferent mechanism for calling the tool
dispatcher. This appendix explains what that mechanism was and why we
choose not to use it.

Calling -the Dispatcher. The dispatcher was called using the new 65816
instruction COP.

The COP is a two byte instruction: an opcode followed by a signature byte.
Western Design Center has reserved all the signature values from 128 through
255. This leaves us with O through 127.

Call Information. The bytes in memory immediately following the COP
contained call information. The first byte is the tool set number (TSNum), the
second byte is the function number (FuncNum).

The pointer to a parameter table comes next. Since the parameter table can be
anywhere in memory, the pointer must be at least three bytes long. But by
convention we use four bytes to represent addresses in the 65816 memory
range. This is much more efficient than three byte pointers for passing a pointer
(although less efficient for memory use). ~

Sample Call. A sample call looked something like:

cop O

dfb TSNum
dfb FuncNum
long Params

So what's wrong with it? We had a version of the dispatcher which used this
mechanism working before we discarded it. We discarded it for two reasons: first
it was not easy for high level languages to use this scheme. Second, the best
dispatch time we could get was 170 microseconds. The scheme we choose
takes only 110 microseconds.

Steven Glass Page 25

